arXiv:1706.10271v1 [cs.LG] 30 Jun 2017

Lifelong Learning in Costly Feature Spaces

Maria-Florina Balcan Avrim Blum Vaishnavh Nagarajan

July 3, 2017

Abstract

An important long-term goal in machine learning systems is to build learning agents that, like hu-
mans, can learn many tasks over their lifetime, and moreover use information from these tasks to improve
their ability to do so ef ciently. In this work, our goal is to provide new theoretical insights into the po-
tential of this paradigm. In particular, we propose a lifelong learning framework that adheres to a novel
notion of resource ef ciency that is critical in many real-world domains where feature evaluations are
costly. Thatis, our learner aims to reuse information from previously learned related tasks to learn future
tasks in deature-ef cientmanner. Furthermore, we consider novel combinatorial ways in which learn-
ing tasks can relate. Speci cally, we design lifelong learning algorithms for two structurally different
and widely used families of target functions: decision trees/lists and monomials/polynomials. We also
provide strong feature-ef ciency guarantees for these algorithms; in fact, we show that in order to learn
future targets, we need only slightly more feature evaluations per training example than what is needed
to predict on an arbitrary example using those targets. We also provide algorithms with guarantees in an
agnostic model where not all the targets are related to each other. Finally, we also provide lower bounds
on the performance of a lifelong learner in these models, which are in fact tight under some conditions.

1 Introduction

Machine learning algorithms have found widespread use in solving naturally occurring tasks in domains like
medical diagnosis, autonomous navigation and document classi cation. Accompanying this rapid growth,
there has been remarkable progress in theoretically understanding how machine learning can solve single
tasks in isolation. However, real-world tasks rarely occur in isolation. For example, an autonomous robot
may have to accomplish a series of control learning tasks during its life, and to do so well it should employ
methods that improve its ability to learn as it does so, needing less resources as it learns more [24, 25]. As
we scale up our goals from learning a single function to learning a stream of many functions, we need to
develop sound theoretical foundations to analyze these large-scale learning settings.

Broadly, the goal of difelong learneris to solve a series of many tasks over its lifetime by a) extracting
succinct and useful representations about the relations among previously learned tasks, and then b) using
these representations to learn future tasks more ef ciently. In this work, we provide new insights into
this paradigm by rst proposing a metric for lifelong learning that exposes an important type of resource
ef ciency gain. Then we design algorithms for important and widely used classes of functions with strong
theoretical guarantees in this metric.

In particular, we consider a setting where evaluating the features of data points is costly and hence
the learner wishes to exploit task relations to improveeatsure-ef ciencyover time. Feature-ef ciency
is critical in applications such as medical diagnosis and high-dimensional data domains where evaluating
feature values of a data point might involve performing expensive or intrusive medical tests or accessing

Authors' addresses:ninamf,avrim,vaishnavh g@cs.cmu.edu .

millions of values. In fact, one of the reasons decision trees (which is one of the important function classes
we study in this paper) are commonly used in medical diagnosis [21] is that once the trees are learned, one
can then makeredictionson new examples by evaluating very few features—at most the depth of the tree.

We consider lifelong learning from the perspective of this feature evaluation cost, and show how we can
use commonalities among previously-learned target functions to perform much better in learning new related
targets according to this cost. Speci cally, if we face a streammaddversarially chosemelated learning
tasks over the same setMffeatures, each with abo8ttraining examples, we will mak® (SmN) feature
evaluations if we learn each task from scratch individually. Our goal will be to leverage task relatedness
to learn very few tasks from scratch and learn the rest in a feature-ef cient manner, making as few as
O (S(m + N)) feature evaluations in total.

We study two structurally different classes of target functions. In Section 3 we focus on decision trees
(and lists) which are a widely used class of target functions [26, 23, 22, 8] popular because of their naturally
interpretable structure — to make a prediction one has to simply make a sequence of feature evaluations —and
their usefulness in the context of prediction in costly feature spaces. In Section 4 we analyze monomial and
polynomial functions, an expressive family that can approximate many realistic functions (e.g., Lipschitz
functions [2]) and is relevant in common machine learning techniques like polynomial regression, curve
tting and basis expansion [27]. Our study of polynomials also demonstrates how feature-ef cient learning
is possible even when the function class is not intrinsically feature-ef cient for prediction. The non-linear
structure of both of these function classes poses interesting technical challenges in modeling their relations
and proposing feature-ef cient solution strategies. Indeed our algorithms will use their learned information
to determine an adaptive feature-querying strategy that signi cantly minimizes feature evaluations.

In Section 3, we present our results for decision trees and lists. First, we describe intuitive relations
among our targets in terms of a smafiknownset ofK “metafeatures” or parts of functions common to
all targets (think oK much less thamN). More speci cally, these metafeatures are subtrees that can be
combined sequentially to represent the target tree. We then present our feature-ef cient lifelong learning
protocol which involves addressing two key challenges. First, we need a computationally-ef cient strategy
that can recover useful metafeatures from previously learned targets (Algorithm 3). Interestingly, we show
that the learned metafeatures can be useful even if they do not exactly match the uikkmoetafeatures,
so long as they “contain” them in an appropriate sense. Second, we need a feature-ef cient strategy that
can learn new target functions using these learned metafeatures (Algorithm 2). Making use of these two
powerful routines, we present a lifelong learning protocol that learns only atkhasit of m targets from
scratch and for the remaining targets examines #&yfeatures per example (whedds the depth of the
targets), thus makin@ (S(NK + mKd)) feature evaluations in total (Theorem 1).

In Section 4, we study monomials and polynomials which are similarly related thigughknown
metafeatures. We adopt a natural model where the metafeatures are monomials themselves, so that the
monomial targets are simply products of metafeatures. In the case of polynomials, this de nes a two-level
relation, where each polynomial is a sum of products of metafeatures. For polynomials, we present an
algorithm that learns onli{ of m targets from scratch and on the remaining targets, eval@af& s+ d)
features per example (whetkis the degree of the target), thus making oflf{S(KN + m(K + d)))
feature evaluations over all tasks. More interestingly, in the case of large-degree monomials, our algorithm
may need fewer feature evaluations per examigletp learn the monomial than that needélitp evaluate
the monomial on an input point.

Next in Section 5, we consider a relaxation of the original model, more speci cally, an agnostic case
where the learner facan + r targets,r of which are “bad” targets adversarially chosen to be unrelated
to the othem interrelated “good” targets. As a natural goal, we want the learner to minimize the feature
evaluations made on the training data of thegood targets. We show that wheris not too large, the
above lifelong learners can be easily made to work as well as they would wheh. To address greater
values ofr, we rst highlight a trade-off between allowing the learner to learn more targets from scratch and

2

learning the remaining targets with more feature evaluations. We then present a technique that strikes the
right balance between the two.

Finally, in Section 6 we present lower bounds on the performance of a lifelong learner for all values of
r, includingr = 0 by designing randomized adversaries. Ignoring the sampleSsered other problem-
speci ¢ parameters, for smallwe prove a lower bound of KN + mK) feature evaluations which proves
that our above approaches are in fact tight. For suf ciently largee prove a bound of(mN), thereby
demarcating a realm efwhere lifelong learning is simply futile.

We present a summary of our results in Tables 1 and 2 below.

Problem Total number of feature evaluations
Decision trees of deptti O(S(KN + mKd))
Decision trees of depttin semi-adversarial model| 0] S('gg: N + m(K + d))
Decision trees of deptt with anchor variables O(S(KN + m(K + d)))
Decision lists of deptll O S(K°N + m(K?+ d))
Monomials of degred O(KN + m(K + d))
Polynomials of degred, sparsityt O(S(KN + m(K + td)))

Table 1: Performance of our approaches

Range ofr Performance of algorithm Lower bound
O r TImin O(S(NK + Km)) (NK + Km)
r 2 [Fmin; fmax] | O(S(rﬁyﬂ} +Km)) max ;1 KN + Km
P Tmax max (L ;1)KN
I Imax O (SmN) (mN)

Table 2: Performance of our algorithms for different values vs the lower bounds for different values of

. . 2
Here, we will de nermin = max & KN K andrpax = min - B8 W

1.1 Related Work

Related work in multi-task or transfer learning [14, 17, 19] considers the case where tasks are drawn from an
easily learnable distribution or are presented to the learner all at once. The theoretical results in that setting
are sample complexity results that guarantee low error averaged over all tasks [6, 7]. On the other hand,
research in lifelong learning has been mostly empirical [25, 13, 9, 24]. There has been a small amount of
recent theoretical work [5, 20]. [5] consider fairly simple targets and commonalities such as linear separators
that lie in a common low-dimensional subspace. [20] consider a setting where except for a small subset of
target functions, each target can be written as a weighted majority vote over the previous ones. [5] also
consider conjunctions that share a set of conjunctive metafeatures, but assume that the metafeatures contain
a unique “anchor variable”. Though decision trees have a more elaborate combinatorial structure than
conjunctions, in this work we are able to achieve strong guarantees for lifelong learning of decision trees
(and other classes) without making such assumptions about the metafeatures. We also note that one of
main technical challenges addressed by [5] is that of controlling error propagation during lifelong learning.
However, for the problems considered in this paper, it is possible to learn targets exactly from scratch, so we
do not have to deal with error propagation.

Feature-ef ciency has been considered in the single-task setting, often under the name of budgeted
learning [16, 11, 1], where one has to learn an accurate model subject to a limit on feature evaluations,
somewhat like bandit algorithms. [18, 3] consider a related problem in a multi-task setting with all tasks
present up-front, where the learner has free access to all features but uses commonalities between targets to
identify useful common features in order to be sample-ef cient.

2 Preliminaries

In this section, we de ne our notations (later summarized in Table 3) and present a high level protocol which
will provide a framework for presenting our algorithms in the later sections. We consider a setting in which
the learner faces a sequencenofrelated target functiong) over the same set dfi features/variables
(where bothm andN are very large). The target functions arrive one after the other, each with its own set of
training dataSU) with at mostS examples to learn from. Also, feature evaluation (or equivalently, feature
query or feature examination) is costly: if we view our training datagfbras anS N matrix, we pay a
cost of 1 for each cell probed in the matrix.

Our belief is that the targets are related to each other through an unknolrro$etetafeatureghat are
parts of functions. More speci cally, all targets in the series can be expressed by combining metafeatures
in F using a known set of legal combination rules, such as concatenating lists or trees. Our algorithms will
learn a set of hypothesized metafeatufethat allows them to learn new targets using a small number of
feature evaluations except for a limited number of targets learned from scratch i.e., by examining all features
on all examples. We calt” our learned representatiorNote that we will refer td= as just metafeatures if
it is clear from context that it does not refer to the true metafeatres

Then, our lifelong protocol is as follows. We make use of two basic subroutinese&REP routine
that used= to learn new related targets, and l[MPROVEREP routine that improves our representatién
whenever the rst subroutine fails. We begin with an empty On taskj , usingF" andS4), we attempt
to cheaply learn targefll) with USEREP. If USEREP fails to learn the target, we evaluate all features
in SU) and learngl) from scratch. Then, we provid® andgl) as input tolMPROVEREP to updateF.
For clarity, we present this generic approach, which we will callésgREP, IMPROVEREP)-protocaol, in
Algorithm 1. In the following sections, we will present concrete approaches for these subroutines, speci ¢
to each class of targets. We will then analyze the performance of the protocol in terms of the total number
of feature evaluations (across all samples over all the tasks) given an adversarial stream of tasks.

Our setting can be viewed as analogous to that of dictionary learning [15, 10, 4] in which the goal is to
nd a small set of vectors that can express a given set of vectors via sparse linear combinations. Here, we
will be interested in broader classes of objects and richer types of combination rules.

Notation Meaning
m No. of targets in sequence
N No. of features/variables
F True metafeature set/representatjon
F Learned representation
K No. of true metafeatures
S No. of samples for each task
st) Training data for task

Table 3: Important notations

Algorithm 1 (Ayg, Ajr)-protocol for lifelong learning

1: Input: A sequence of m training sets S(1), S, ... corresponding to targets (1), g(®), ... each of
which can be represented using an unknown set F of K metafeatures.
2: Let F be our current learned representation. Initialize F to be empty.
3:forj=1,2,...mdo
4: Using F and SV, attempt to cheaply learn gU) with USEREP algorithm Ayg.
5: If learning was not successful, extract all features in S\) and learn ¢(¥) from scratch; provide F and
¢\%) as input to IMPROVEREP algorithm Ag to update F.

3 Decision Trees

We first formally define decision tree metafeatures and describe our learning model. Based on this we
describe our problem concretely in Problem Setup 1. To simplify our discussion, we consider decision trees
over Boolean features, though we later present a simple extension to real values. Formally, in a decision tree
g:{0,1}" — {+, —}, each internal node corresponds to a split over one of N variables and each leaf node
corresponds to one of the two labels {4, —}. No internal node and its ancestor split on the same variable.

Now, we define a metafeature to be an incomplete decision tree, a tree where any of the leaf nodes can be
empty i.e., the labels of some leaf nodes are left unspecified. Then, there are two natural ways of combining
metafeatures to form a (complete) decision tree. Let u be one of the empty leaf nodes of a metafeature f.
We may combine f with another incomplete tree f’ using an AFFIX(f, u, f’) operation which simply affixes
the root node of f’ at u (as illustrated in Figure 1). As a result, u now becomes an internal node of a larger
incomplete tree. The variable at u and its descendants correspond to the variables in f’. Alternatively, we
may perform a LABEL(f, u,) operation which assigns a label | € {+, —} to the empty node v in f. We can
then pick an arbitrary element f € F, apply an arbitrary sequence of LABEL and AFFIX operations (affixing
only trees from F) and eventually grow f into a decision tree. In this manner, we define below what it means
to be able to represent a decision tree using a set of metafeatures /. Both LABEL and AFFIX are described
for completeness in Appendix A.

Definition 1. Ler F = {fi, f2,...} where each metafeature f; is an incomplete decision tree. We define
DT(F) to be the set of all decision trees that can be grown by using the elements of F and sequentially
applying LABEL and AFFIX operations on them. We say that a decision tree g can be expressed using F if
g € DT(F).

Figure 1: Illustration of AFFIX

A modeling challenge here is that there are no known polynomial-time algorithms to learn decision
trees, even ignoring the issue of costly features and even for trees of depth d = O(log N). On the other
hand, there are popular top-down tree-learning algorithms (like ID3 and C4.5) that work well empirically
[23, 22, 8]. Therefore, we will assume that we are given such an algorithm that indeed correctly produces
g9 from SU) if we are willing to evaluate all the features in all the examples. More specifically, these
methods are defined by a “gain function” Gain(S,) that given a set of labeled examples S and a feature

i, returns a score indicating the desirability of splitting the Saitsing featura. For instance, ID3 uses
information gainas its splitting criteriort, and an elegant theoretical analysis of the use of different such
gain functions is given in [12]. The algorithm begins at the root, chooses the variable of highest gain to
put there, and then recurses on the nodes on each side. This process continues until all leaves are pure (all
positive or all negative).

examples, satisfy the following conditions:

1. There exists an unknown $etof K metafeatures{ ~ N) such thasj, gli) 2 DT(F).

2. Thetargeg() can be learned by running top-down decision-tree learning®husing a giverGain
function. In other wordsalways choosing to recursively split on the variable of higligsin based
onSU) producegy).

3. We are givers;d (d N) such thatgl) has at moss internal nodes and depth at mast Then,
S = O(slogN) examples are suf cient to guarantee tlgit) has high accuracy over the underlying
distribution over data.

A straightforward lifelong learning approach would be as follolws?ROVEREP simply adds td- fea-
tures seen in tasks learned from scratch as metafeatured saRiEP examines only those (meta)features in
F when learning a target. Since each metafeatuFe@an have at mostdistinct features, this learns at most
K targets from scratch and evaluates olly features per example on the rest i®.(S(KN + mKs))
feature queries overall (see Appendix A for details). However, when (N) this is no better than
learning all tasks individually from scratch. In this section, we will present a signi cantly better protocol:

Theorem 1. The UseREP Algorithm 2,IMPROVEREP Algorithm 3)-protocol for decision trees makes
O (S(KN + mKd)) feature evaluations overall and runs in tipely(m; N; K; S; s;d).?

This is a signi cant improvement especially in the case of shallow bushy trees for whichs e.g.,
whend = O(logN) buts = (N). To achieve this improvement, we need a computationally ef cient
approach that extracts bigger decision tree substructures from previous tasks and also knows how to learn
future tasks using such a representation. We rst address the latter problem: we presésitRAaP
routine, Algorithm 2, that takes as input a set of hypothesized metafedueesd a training datas&
consistent with an unknown tregeand either outputs a consistent tgeer halts with failure. To appreciate
its guarantees, de neref(f) to denote the set of all “pre x” trees (prunings) of some incomplete tree
For any set of hypothesized metafeatufedet Pref(F") = f Pref(f) jf~2 Fg. We show that Algorithm 2,
givenF, can effectively learn a target that can be represented using noFgriyt also the exponentially
larger metafeature s@ref(F). That is, ourUSeEREP algorithm can effectively learn trees from a much
larger spac®T (Pref(F)) compared to jusDT(F).

We now describe Algorithm 2. Though we limit our discussion to Boolean feature values for simplicity,
we later extend it to real values. In Algorithm 2, we basically grow an incomplete decisiapdreenode at
atime, by picking one of its empty leaf nodesand either assigning a labeldar splittingu on a particular
feature. Before doing so, we rst make sure that we have not failed already (Step 4). More speci aally, if

Y| featurei splits data se® into two setd. andR, its information gain of featureis thenEnt (S) [:L?: Ent(L)+ %Ent (R)I.
Here,Ent is the binary entropy of the label proportions in the given set; that ispifraction of the labels ir8° are positive, then
Ent(S% = plog,(1=p)+ (1 p)log,(1=(1 p)).

2 |t may seem that this result can be equivalently stated in terms of the average number of features examined per example i.e.,
O (KN + mKd). However, such a performance metric is different from what we de ned. Under certain independence conditions
it may be possible to learn a target simply by drawing a large number of examples and examining only a single feature per example
while still making many feature evaluations in total.

is at a depth greater thahor if g already has more thanodes, we halt with failure because we were not
able to nd a small tree consistent with the data. If not, we proceed to examine samples from the training
set that have reached which we will denote bys,. If all x 2 S, have the same label, we malea leaf
with that label and proceed to other nodesin

Otherwise, we evaluate a small set of feature$Sgemo compute theiGain and pick the best of those
features to be the variable at(denoted byar (u)). The way we pick this set of featureswtwhich we
will call | , is based on the following intuition. Assume we have grapdentically tog so far and let®be
the node irg that corresponds to. Then the correct variable to be assigned &var (u%9 which is in fact
the gain maximizing variable o8, (as assumed in the second point of Problem Setup 1). Thus, our goal is
to ensurevar (u9 21 .

If indeedg 2 DT (Pref(F)), this variable must in fact correspond to the variable in some node in some
f~2 F. In other words, we should be able to “superimpose” sérmver ¢ with the root off~at eitheru
or one of its ancestors such that the variabl€ithat has been superimposed oues in fact the correct
variable foru. Additionally, the variables ifi'should not con ict with those that have already been assigned
to the ancestors afin g. Since we do not know whicfrand which superimposition éfinduces the correct
variable atu, we add td the variable induced at by every possible superimposition: we pick everg F
and every nodev that is either an ancestor afor u itself, and then superimpoggover g with its root
atw. We add tal the variable thus induced at provided the variables ifir do not con ict with those in
the ancestors af. In Algorithm 2, we use helper routinesiDUCE(g; w; u;f) which outputs the induced
variable andcoNFLICT(g; w; u;) which outputs false if there is no con ict (both these simple subroutines
are described for completeness in Appendix A and illustrated in Figure 2). Finally, since no variable should
repeat along any path down the root, we remove ffoany variable already assigned to an ancestar. of
Then, we assign the gain maximizing feature froro u.

Observe that, at, in total over allf~we may examin®(jFj d) features ors,. Therefore, for a particular
sample, considering all nodes along a path from the root, we may exajfigd?) features. However,
with a more rigorous analysis we prove a tighter bound:

Theorem 2. USeREP Algorithm 2 has the property that givéhi and dataS, a) if the underlying target
g 2 DT(Pref(F)), the algorithm outputg and b) conversely, if the algorithm outpwgswithout halting
on failure, theng has depth at mod, size at moss and is consistent witl$, c) the algorithm evaluates
O(jFj + d) features per example.

Algorithm 2 USEREP - Learning a decision tree using metafeatures

1: Input: Metafeature$, samplesS consistent with unknowg, depth boundl, size bound.
2: Initialize the treeg to be an empty leaf node. L&t be the set of empty leaf nodesgn

3: while9Qu2Z do

4: Halt with failure if a)u is at depth> d or b) the size ofis>s.

5. LetSy be the examples that have reached

6: if allx 2 S, have the same labkthen

7 Makeu a leaf with the label.

8

9

else
Letl be the set of features to be examined alnitialize | to be empty.
10: for eachf~2 F and each node in the path starting from the root gfto u do
11; If CONFLICT(g; w; u;f) is false, addNDUCE(g; w; u;f) tol .
12: Remove from any variable assigned to an ancestou of
13: Evaluate only the featurdson S,. Assignvar (u) argmaxjp Gain (Sy;i).
14: Outpute.

Proof. (a) and (c) follow from Lemma 3 and Lemma 4 respectively, which we prove below. (b) follows
immediately from the algorithm, more speci cally from Step 4 and 6. We need this guarantee so that when
the learner does not fall, its output is guaranteed to be correct. O

Lemma 3. If g 2 DT(Pref(F)) , Algorithm 2 outputst = g.

Proof. We are given that) 2 DT(Pref(F)). We will show by induction that is always grown correctly
i.e.,g 2 Pref(g). This is trivially true at the beginning. Consider the general caseulbst the node iy
that is chosen in Step 3 to be grown. By our induction hypothesisstisad pre x of g, there exists1%in g
that corresponds to and furthermoreS, = Syo. Now to show thati will be grown identical tau®, since
g is only a pre x, the size and depth constraints will be satis ed and so we are guaranteed to not halt with
failure at this node. Next, ii®was a leaf node, sinc®, = Syo, we are guaranteed to labeks a leaf and
assign it the correct label.

If u® is not a leaf node, letvar (u) be the variable present in® ie., var (U9 =
arg maxonj Gain (Syo;i). Therefore, to show that we assigar (u9 to u in Step 13, we only need
to prove thatvar (u9 2 | i.e., we consider this feature for examination. To prove this, note thgt in
var (u9 belongs to the pre x of some metafeatdrefrom F that is rooted either at sonv8which is either
u®itself or at one of its ancestors (becags2 DT (Pref(F))). We can show that in Step 11, when= v
andf~= f~, we end up addingar (u9 to | . First, if v is the corresponding node gwe will have that
CONFLICT(g; V; u;f~) is false. Furthermore, cleariwpuce(g; v; u;f) = var (u%. Now sinceg has no
variable repeating along any root-to-leaf patar, (u% does not occur in any of the ancestor nodes’énd
similarly in g, it does not occur in any of the ancestor nodes.of hus, the conditions in Step 11 succeed,
following whichvar (u9 is added td . O

Lemma 4. Algorithm 2 makes at mo§i(jFj + d) feature queries per example.

Proof. First of all note that each example corresponds to a particular pathlinus, the features examined
on that example agwas grown, correspond to the different features computed fRaace(g; w; u;f) for
different nodess andu on that path. These feature queries can be classi ed into two types depending on
whether A)w = u or B) w is an ancestor afi. For type A, sincev = u, INDUCE(g; w; u;f) can only be
one of the xed set of features that occur at the root of metafeaturEs iim total this may account for at
mostjFj feature examinations.

Now consider the type B features queries correspondivg € u. Each feature examined in this case
corresponds to a 3-tuplev; u;) wherew is an ancestor ofi. We claim that for a giverfi; w has to be
unique in this path. This is becaugar (w) must equal the root variable 6fby de nition of INDUCE, and
any given variable appears at most once on any path by Step 12.

Thus type B feature query effectively corresponds to a 2-t(pjé€’) instead of a 3-tupléw; u;f)
becausd™ corresponds to a unique. Letw,- denote this unique node féT. Now, letk, be the number
of type B feature queries made &t We can divide this case further into type B(a) consisting of nodes
u, such thatk, = 1 and type B(b) corresponding tq, > 1. In total over thed nodes ing, we would
examine onlyd type B(a) features. Now, for type B(b), at nodewhere we evaluatk, features ati, we
claim that this eliminates at leakf 1 different metafeatures from resulting in feature examinations of
type B further down this path. This is because each okth&eatures that we examine atcorrespond to
INDUCE(g; Wi U;) for somef~2 F. Let this set of metafeatures Bg, wherejFyj = ky. Now, we assign

only one feature tal that corresponds to sdy, 2 Fy. After this, when we are growing a descendant node
v, forthek, 1 other metafeaturelS2 Fy, andf™6 f~, CONFLICT(g; W, v; ") will be true as there will

be a con ict atu. However, sincECONFLICT(§; W v;f") needs to be false in Step 11 fbrto result in a
feature query, we conclude that there lge 1 different metafeatures that do not result in a feature query
beyond this point.

Using the above claim, we can now bouFr;du:ku> 1 ku, which will account for the total feature queries
of type B(b) along the path. Sindg, 1 denotgs the number of eliminated metagaatures beyorzohd
since onl¥ at mogfFj can be eliminated, we have ., (ks 1) j Fj. Now,since ., .;1 d, we
have that ., -iku j Fj+ di.e., we make at mogFj + dtype B(b) feature queries of the last kind on
this path. Thus, in summary, we examine at mo§t=j + d) features on each example. O

Now, to provide a lifelong learning protocol for Problem Setup 1, the challenge is to design a computa-
tionally ef cient IMPROVEREP routin€®. To this end, we present Algorithm 3 that creates useful metafea-
tures by adding t& well-chosen subtrees from target functions. In particular, after learning a tafigen
scratch, we identify a root-to-leaf pathgrthat we failed to learn using. We add td= the subtrees rooted
at every node in that path. The intuition is that one of these subtrees makes the representation more useful.
To describe how the path is chosen,ddie the incomplete tree learned usigust before we halted with
failure. Since either the depth or the node count was exceedgdhiere must be a path from the rootepf
longer than the corresponding pathginWe pick the corresponding pathgwhich was incorrectly learned
in g (see Figure 3).

Finally, as we see below in the proof sketch for Theorem 1, the resulting protocol evaluat&s(srdy
features per example when learning frém besides learning trees from scratch. Recall that this is a
signi cant improvement of our straightforwatdseREP which evaluate® (Ks) features per example. In
Appendix A, we present results for more models for decision trees.

Algorithm 3 IMPROVEREP - Decision Trees

[EnY

. Input: Old representatiofigig and atreg) 2 DT(F) learned from scratch and the (incorrect) incomplete
treeg learned usingFoq.

:F Fog

. ldentify a path from root o such that the corresponding pathgihas fewer internal nodes.

. For each node in the corresponding patlg,iadd the subtree rooted at that nodé&to

: OutputF

a A W N

Proof. (for Theorem 1) We will show by induction that at any point during a run of the protocd, if
targets have been learned from scratch, then there exists a subksetiefmetafeatures 0 F that have
been “learned” in the sense that2 F %is the pre x of some metafeature i, implying thatDT (F 9
DT(Pref(F)). Then after learnind< targets from scratch, it has to be the case it F after which
DT(F) DT(Pref(F)) and hence from Lemma 3 it follows that the protocol can never fail while learning
fromF.

The base case is whdétis empty for which the induction hypothesis is trivially true. Now, assume
at some point we have metafeatufsgq and these correspond to true metafeatlfls F such that
DT(FC?Id) DT (Pref(F)) andeg’Idj = k. Now, from Theorem 2, we can conclude that any target that lies
in DT(F3,) will be successfully learned by SEREP Algorithm 2. Hence, whetySEREP does fail on a
new target, it means that thg contains metafeatures from F c?,d. In fact, along any path ig in which
learning failed (that is, the tregthat is output differs frong on this path), there must be a node at which
some metafeature frole F 3 is rooted. If this was not true for a particular failed path, we can show
using an argument similar to Lemma 3 that this path would have been learned correctly. Therefore, when

3As a warm-up, consider a semi-adversarial scenario where each elenferitasf a reasonable chance of being the topmost
metafeature in any target. We can then learn the rst few targets from scratch and simply add fhemttat with high probability,
each metafeature frofn is guaranteed to be the pre x of some elemenfEinThen we can use Algorithm 2 to learn the remaining
targets using= as all those targets will lie iDT(Pref(F)). We provide a careful analysis of this simpler case in Appendix A
Theorem 17.

Algorithm 4 IMPROVEREP - Decision Lists

1. Input: Old representatiofgg, targetg learned from scratclg learned usind g q.
2: Letg = (gp; gs) Whereg; is the longest common pre x af andg.

32 F Foalf g9

4: ReturnF

We now present an outline of our proof for the claim that employirsE REP Algorithm 2 along with
IMPROVEREP Algorithm 4 learns at mogD K 2 decision lists from scratch. A crucial fact we use is that
UseREP Algorithm 2 learns any list iff it belongs tBT(Pref(F)). Now, observe that there must exist an
f 2 F such thaff is a part ofg and furthermorelJSeEREP was able to learn upto a pre &k, of f after
which it failed to learn the remaining suf x df, sayfs. Our result follows if we can show that there can
only beO(K)) failures ofUSEREP that correspond to a particulfirin this manner. To prove this, we will
categorize the failures d#SeREP corresponding té based on whethdr, 2 DT(Pref(Fgqg)) and show
that there can be onlp (K) failures for each case, for a givén

Whenf, 2 DT(Pref(Foiq)), after runningdseReP Algorithm 2, we will have thats 2 DT(Pref(F))
becausegs which has the pre xfs was added to our representation. Thén2 DT(Pref(Fgg)), and
therefore on any new target there can not be a failure correspondingltaus, there is at most one failure
corresponding té , of this type.

The case wherg, 2 DT (Pref(Foig)) requires a more intricate argument which is based on identifying
anotherf chosen carefully from an “indirect” representationgdh terms offF . In particular, on one hand
there is a direct representation @in terms ofF . At the same time, since Algorithm 2 learnggl using
Foid, Op can be represented as a sequence of pre xes fig Since each element iRy is also from
DT(F), we can indirectly represent this sequence of pre xes in terms of parts of metafeatures from
We will choose an appropriately positionéd from this representation and show that there can be only
two failures corresponding to a particufaandf . Thus, there can only @ (K) failures for a particulaf .

Theorem 5. The UseREP Algorithm 2, IMPROVEREP Algorithm 4)-protocol for decision lists makes
O S(K?N + m(K?2+ d)) feature evaluations overall and runs in tirpely(m; N; K; S; d).

Proof. We show that the protocol learns at m@stK 2 lists from scratch. Then, from Lemma 4 our result
follows.

Now, we need to understand how adding the sugsfrom a targeg on whichUsSeREP failed, makes
the representation more useful. As a warm up, we can show that when the protocol faces the same target
g in the future, the updated representatfor= Foq [gsg will be able to learn it. A crucial fact from
which this follows is thatJSEREP Algorithm 2learns any list if and only if the list can be represented as a
concatenation of pre xes of elements frén This fact holds because Lemma 3 and the way the algorithm
works. Thus, since we were able to leggwhen we rst sawg, g, is a concatenation of pre xes froffigq
i.e.,gp 2 DT(Pref(Foig)). Then, sincey = (gp; gs) 2 DT(Pref(Foig [f 0s0)), we can learm usingF.

Of course, we should show that the updated representation is more powerful than just allowing us to
learn repeated tasks in the future. To see how, note that since thegégetoncatenation of metafeatures
from F, its suf x gs must begin with the suf x of a metafeature frof. More formally, sinceg 2 DT(F),
0s must begin with a suf Xf s of an element 2 F . Letf, be the corresponding pre x df. Now, consider
a future target that contairis If the learner is able to identify all nodes in the target upto the end of pre x
fp, the learner is also guaranteed to idenfifgompletely in the target. This tells us a little bit more about
the power of the updated representation.

Now, to prove our lemma, we use the fact that each failurd ®REP Algorithm 2 must correspond
to a speci c element 2 F as seen above. That is, there must exist an(fp;fs) 2 F suchthaf ¢ ¢

11

and furthermorelUSEREP was able to learn upto a pref, of f after which it failed. We claim that there

can only beO(K)) failures of USEREP that corresponds to a particularin this manner. From here, our
lemma immediately follows. To prove this claim, we will categorize the failurdd s REP corresponding

to f into two different cases and bound the number of failures in each case. Throughout the following
discussion, we will simply use the term failure to denote failur&eEREP.

We will divide failures corresponding tb based on whethdt, can be represented as a concatenation
of pre xes fromFgq or not. If it can be, we show that it is easy to argue that in any future target there will
not be a failure corresponding to If not, we present a more involved argument to show that there can be
at mostK failure events corresponding to a particularThen, the bound 0® K2 on the total number
of failures follows.

Case 1 For the rst case we assume thigt 2 DT(Pref(Fog)). Then, clearly, this is true for the
new representatioR” i.e.,f, 2 DT(Pref(F)). Furthermore, since there is a new elemgnwith fs as
its pre x, fs 2 Pref(F). This implies that 2 DT(Pref(F)). This means that we can henceforth learn
an occurrence of in a new target if learning has been successful until the beginnitiginfthat target.
In other words, there can never be another failure that correspohddtos case can hence occur only once.

Case 2 The second case correspond$ & DT (Pref(Foig)) . We will now subdivide this case further
based on another metafeatfif2 F , a part of which lies in some hypothesized metafeatuR,jpand was
used to learn/match a part bfin g,. We will x f Oand argue that there can be at most two failure events
characterized b andf °during the lifelong learning protocol. Since there are dflygifferentf © then for
a xed f, there can only b&K failure events of this type, thus completing our proof.

We begin by informally explaining how we choo&to classify a given failure event. We rst note
that there are two ways in whialy can be represented in terms of the true metafeatire¥he “direct”
representation corresponds to the fact the2 DT(F). On the other hand, there is also an “indirect”
representation: since Algorithm 2 could learn the prgyxusingFoiq, gp can be represented as a sequence
of pre xes fromFgq. Since each element gg is a part of older targets frodT(F), we can represent
this sequence of pre xes in terms of parts of true metafeatures (that are not necessarily pre x/suf x parts).

Now, let the root variable of bei;. There must be a unigue element in the sequence of pre xes that
containsis . We letf “be the metafeature iR that contributes to the last bit of this unique element in the
above-described indirect representatioBefore we proceed to describe this more formally, we note that
this is all possible only because indeed belongs tby. If it did not, it meand , is an empty string, which
we have dealt with in Case 1.

We now state our choice &°more formally. Since we were able to leagnusingFoq We can write
Op = (Prefo(fT,); Prefo(f7,); :::) for f1,;f7,;: .1 2 Foig where we use the notatidaref(f7) to denote a
particular pre x off~. Let Pref,(f7,) be the unique element in the above sequence that confa{m® use
the indexr to denote that it contains the root). Like we stated before, difces also the suf x of some
old target inDT(F), f7, must be made up of parts of true metafeatiesThe same holds fdPref,(f7,)
too. We will focus on the true metafeature that makes up the last tBrefb(f7.). Thatis, letf ©2 F
be the metafeature that occurs in an older target, such that a non-empty s&frefe(fj) comes fronf ©
i.e., there exists suf xSuff,(Pref(f7.)) such thatSuffa(Pref,(f7)) o f° Here, agairBuff,(f) is used
to denote a particular suf x of. Thus each failure event in this case can be characterized by a particular
andf ©

Note thatSuff,(Pref>(f7.)) need not necessarily be a suf xbfbecausé]. may have stopped matching
with g somewhere in the middle & It need not necessarily be a pre x tf either becausg, is only a
suf x of some target irDT(F) and this suf x may have begun somewhere in the middie%n that target.

To show that there are at most two failure events for a givemdf © we will consider two sub-cases

12

similar argument. The only difference is that n@uff>(Pref,(f7.)) is not necessarily a pre x of °and
therefore,i; o is not necessarily present 8uff,(Pref,(f7,)) (see Figure 5. However it is guaranteed that
a suf x of f 9containingi; is present irf].. Now let Suff,-(Prefo(f))) be an alternative shorter suf x of
Pref(f|,) that begins only ait; .

Now, consider a new target with a similar failure with a simHSarffg?(Prefg(f 10,)) that begins withis .
We will again show how we can use the updated representation to represent é larger pfe spci cally
a pre x that extends until the end 6fin g° In particular, we make use of the fact that the algorithm was able
to learn at least beforig in this target, beyond which we can ledmnthe way we did in the previous target,
and then appenfd; from the representation. More speci cally, we rst extend/shorten the pr%rafg(f |?o)

that is used to match witgg to another pre xPrefg?f 10,) that it has the suf xSuff,o(Pref>(f),)) (which is

only possible because 2 g Prefg?ﬁoo)). On doing this, we can represent the rest afsingF like in the
previous case. '

Thus, we take the sequen@eref5(fyo); Prefy(fjo); : 1) 1) we retain the rst® 1 elements, 2) modify
ther &h element, 3) append tinéh, r +1th, : : : elements from the representation égr 4) and nally append
fs. This represents a larger pre x gfthat included completely, using only pre xes frorf". Namely, this
is (Pref(f7o); Prefy(fie); : :: Prefi{fio); Prefo(f7, .,); Prefa(f7,.,);:::: fs). This contradicts the fact that
we failed to learrf completely ing®. r

O

4 Monomials

We consider lifelong learning of degrelemonomials under the belief that there exists a séf afnono-
mial metafeatures likéx1x2; x2x3; : : :g and each target can be expressed as a product of powers of these
metafeatures e.g(x1x2)%(x2x3). This is similar to the lifelong Boolean monomial learning discussed in
[5] where each monomial is a conjunction of monomial metafeatures. Since that is an NP-hard problem,
they assume that the metafeatures have so-called “anchor” variables unique to each. We will however not
need this assumption.

Formally, for any inpuk = (x1;X2;:::Xn) 2 RN, we denote the output oféxdegree targgt monomial
g = (01;0;:::;0v) by the functiorPg (x) = x¥*x$:::x{N whereg; 2 N[f Ogand the degree ;g d.
The unknown metafeature det= ffy;f,;:::fx g consists oK monomials. To simplify notations, we also
consider~ to be a matrix where columinis f;. Therefore, ifg can be expressed usifg theng lies in the
column space df denoted byC(F). Then, our problem setup is as follows:

Problem Setup 2. Them d-degree targetg™®: : : : (™) and the training data (each of at mBtexamples)

1. There exists an unknowh K matrixF (K N) such thagl) 2 C(F).
2. EachDU) is a product distribution (as assumed in [5, 2]) that is not too concentrated (explained in
Appendix B).

Unlike the decision tree problem, where we only considered an abstraction of the learning routine, here
we present a particular technique for learning a monomial exactly. We show that under product distributions
that are not too concentrated, it is possiblexactlylearn the power of a given feature in a target by exam-
ining only thatfeature on polynomially many samples (Lemma 22 in Appendix B). Naturally, we can learn
the monomial exactly from scratch as presented in Algorithm 15 in Appendix B from only polynomially
many samples. Then, in the lifelong learning model, by merely keeping a record of the features that have
been seen so far, it is fairly straightforward to learn okytargets from scratch while learning the rest by
examiningO (Kd) features per example (Theorem 24).

15

Algorithm 6 USeEREP - Learning a Monomial from Metafeatures

1: Input: Metafeature§ = [f3;:::;f] (k K), sample seb of sizeS.

2: Halt with failure if F" is empty.

3: Letl be the indices of those rows i that are linearly independent and Efl] be the corresponding
k k sub-matrix ofF.

4: Examine featurek on all samples and use Lemma 22 to learn and round off estimdimseachi 2 | .

Solve forw,_-[I](g[l D) inFTl]Wr:n](g[l 1) = g[l]. If no solution exists, halt with failure.

Estimateg Fwe](g[l D-

Halt with failure if the degree of is greater thaul.

Draw a single sampléx; Pq4(x)), examine the features relevantgo If Py(x) 6 Pg(x), halt with
failure.

9: Returng.

probabilityl O (). Also, sinceF has at mosK columns, from Lemma 7 we have that each time we
learn using the representation, we exanknéatures per example. Besides, we exandifeatures that are
relevant tog in Step 8. O

Lemma 7. LetF be anN k matrix. Then, with high probability. O — , a)ifg 2 C(F), then
Algorithm 6 correctly learns and outpugs = g b) if Algorithm 6 does output som&g theng = g, ¢)
Algorithm 6 examines only at mdsfeatures per sample point and at mdgeatures on a single sample.

Proof. a. Given thatF is of rankk, then ifg 2 C(F), there exists a unique solution far-(g) in
Fw(g) = g. Note that this is a system &f linear equations ikk. Therefore, if the Algorithm picked
any set ofk linearly independent rows = fiq;iz;:::ixg from F, there must exist a unique solution to
FTI]Wp[l](g[l 1) = 9[l] where the solution isstu[I](g[l) = w(g). Thus, solving this system will give
us the value ofv(g) from which we can computg correctly usingFw(g) = g. This however re-

probability of1 O ~ from Lemma 22 (from Appendix B) using polynomially many samples.
b. To prove our second claim, observe that the only event in which the learner may potentially have an
incorrect output is wheg 2 C(F) but we still do learn av, , because it so happens tiggt] 2 C(Fl]).

However, g = F“w,:[I](g[l 1) 8 g. If g has a degree greater thdnthe algorithm halts with failure.
Otherwise, we can show using Lemma 25 (see Appendix B) that by drawing a single sample and checking
whetherPg(x) = Pg(x) we can conclude whethegr= g.

c. This follows directly from the design of the algorithm: we examine dfilyeatures on all samples,
and then on a single new sample we examine features relevgmirtvidedg has degree at modt O

4.1 Polynomials

In this section, we study lifelong learning of real-valued polynomial targets each of which is a sum of at most

t degreed monomials. Similar to the Boolean model in [5], our belief is that there exists a set of monomial
metafeatures such that each monomial in the polynomial can be expressed as a product of these metafeatures
like we described in the previous section. As an example, givenf x1x»; Xx3x3; : : :g, one possible target

is 3(x1x2)(x2x3) 5(x1x2)?(x$x3). Again, we assume that eaBi)) is a product distribution oveRN .

Since polynomial learning is a hard problem, we will have to make a strong assumption thdd@ach

is known which then enables us to adopt the polynomial learning technique from [2]. Note that we can
relax this assumption when all the distributions are common (like it is assumed in [5]), so that the common

17

distribution can rst be learned usin@ (poly(N)) feature evaluations on unlabeled examples. However,
if the distributions were all different, learning them may né&2@poly(mN)) feature evaluations, which
would be feature-inef cient.

Formally, for any inputx 2 RN, we denote the outpuboftasparsed-degree target polynomi& =
f(91;8g,);(92;89,);:::9(JGj t) by the functionPg(x) = (9:2)2G agPg(x) where for eaclfg; ag) 2
G, g is a monomial of degred and co-ef cientag 2 R. Our belief is that there exists a set of monomial
metafeature$, and each polynomial can be represented as a sum of monomials, each of which can be
represented using as described in Section 4. More formally, a polynon@adan be represented usifg
if for each(g;ag) 2 G, g 2 C(F). More compactlyGl) C(F) R. Then, our problem setup is as
follows.

Problem Setup 3(Lifelong polynomial learning). Them d-degreet-sparse target$() and datasS()
(each of at mosg examples) satisfy the following conditions:

1. There exists an unknowh K matrixF (K N) such thateaci’) 2 C(F) R.
2. The samples i84) are drawn i.i.d from aknown product distributionD () 5,

4.1.1 Learning a polynomial from scratch

We now brie y discuss the algorithm in [2] for learning a polynomial from scratch from a known distribu-
tion. The basic idea is to use correlations between the target and some cleverly chosen functions to detect the
presence of different monomials @ For the sake of convenience, assume there exist correlation oracles
that when provided as input some functiBf, return the exact value of the correlatidi®Yx); Pg(x)i,
P qx); Pé(x)i etc., In practice these oracles can be replaced by approximate estimates based on the sam-
ple S. We will limit our analysis to the exact scenario noting that it can be extended to the sample-based
approach in a manner similar to [2]. Our guarantees will then hold good with high probability, given suf -
ciently many samples.

To simplify the discussion we will assume like in [2] that the distribution over each variable is identical
i.,e.,D = N Then, asa rststep, giveD, the learner creates an inventory of polynomials in each variable
X; such that these polynomials represent an “orthornormal bases” with resgectMore formally, the
inventory will consist of polynomialsi go(x;) of degreed® (identical for each 2 [N]) foreach0 d° d,
such thaE[H go(x;)H qoo(x;)] is zero wherd®6 d°®and is one whed®= d°

Equipped with this machinery, we then set out to perforiterations extracting one monomial froG
at a time. Assume that from the iterations performed so far, we have extracted a set of monomials and their
coefcientsG G . Now, for the next iteration, we rst nd the largest power »f that is presentitc G

by testing whethehH 5q0(X1); (Ps PG)Zi > 0ford®= d;d 1;:::in that order. These tests detect the

presence ok¢, xj‘ 1. respectively. We stop when the test is positive for so:rfie The curious reader

can refer [2] to understand why this particular test works, but all we need to know for our discussion is that
if these tests are done in this particular order, we are guaranteed to nd the highest pmﬁfe'rm@ G
Then, we nd the largest power of, that “co-occurs” Withx‘{1 in some monomial, by testing whether
MH 24, (X1)H2d0(X2); (Ps PG)Zi > 0ford®= d;d 1;:::to detect the presence loflxg; x‘ljlxg Lo
and so on in that particular order. In this manner, the algorithm builds a monomiaNogeb-iterations
which turnsd)ut to be thiexicographically largesg present inG G. Now, to compute the co-ef cient
agwe nd h iN=1 (bg Hg (Xi)); Pci whereby, is the co-ef cient ofxigi inHg (Xi). The algorithm then adds
(ag; 9) to Gbefore proceeding to the next biterations.
The above summary differs from that original algorithm presented in [2] in the precise quantity that it
extracts in each iteration. [2] consider a representation of the polynomial in the orthornormal bases such

that it is a weighted sum of terms of the fory, (Xx1)Hq,(X2) :::Hg, (Xn), and in each iteration they

5This is the model considered in [2]. An upper bound®oan be found in [2].

18

extract one such term. We however use the representation in the orthonormal bases only to detect the
lexicographically largest monomial and its corresponding co-ef cient and then remove the monomial itself.

4.1.2 Lifelong Polynomial Learning

As a baseline in the lifelong learning model, we can learn the targets by maKis¢gkKN + mKd)) feature
evaluations by simply remembering what features have been seen so far (Theorem 26 in Appendix B.3).
Below, we present an approach that makes an(\s(KN + m(K + td))) feature evaluations. This is an
improvement for sparse polynomidls K e.g., whert = O (1).

The high level idea is to maintain a metafeature set of “linearly independent monomials” picked from
previously seen targets, like we did in the previous section. When learning a targeFysivey perform
t iterations to extract the monomials, but now in each iteration we nd the lexicographically largest power
restricted to at mosK features. Thes& features, say, correspond to linearly independent rows in
F. Given the powers of these features, gfy], we can determine powers of all the features using the
representation like we did in the case of monomials. Then, as before, we exfrant the polynomial and
proceed to the next iteration. Aftéiiterations, our estimate of the polynomial is complete, so we draw a
single example to verify it. If our veri cation fails, we learn the polynomial from scratch and update the
representation with more linearly independent monomials from the learned polynomial.

Note that the restricted lexicographic search examines only a xed d¢€tfefatures per example. Be-
sides this, in each of theiterations, we evaluaté features relevant to the extracted monomial, accounting
for K + td feature evaluations per example.

Algorithm 7 IMPROVEREP - Polynomials

. Input: RepresentatioR,q and a targeG learned from scratch.
:F Fou

: forg2 Gdo

If g 2 C(F), addg as a column tdé.

: ReturnF

a b w N P

Theorem 8. The UsSeREP Algorithm 8, IMPROVEREP Algorithm 7)-protocol for polynomials makes
O (S(KN + m(K + dt))) feature evaluations overall and runs in timpely(m; N; K; S;t).

Proof. Below in Lemma 9, we show that we increase the rankdfy at least one every time we fail to
learn using= on some target. IUSEREP has failed on more thak targets it means that there are at least
K + 1 monomials fromC(F) that were added as columnsFoand are linearly independent. However,
sinceC(F) is aK -dimensional subspace RN, this results in a contradiction, thus proving that at most
failures ofUSEREP can occur. The result then follows from Lemma 9 and the factjfjatontains only at
mostK targets. O

Lemma 9. LetF be anN k matrix. Then, a) ifiGJ) 2 C(F), then Algorithm 8 correctly learns and
outputsGl) = GU) b) if Algorithm 8 does output son@!), thenGl) = GU). Also, Algorithm 8 examines
only at mosk + td features per sample point.

Proof. a. AssumeGi) 2 C(F). The fact that in each iteration, we nd the lexicographically largest value
for the features$ follows directly from the discussion in [2]. However, we do have to prove that there is a
uniqueg in Gsuch thag(l] corresponds to the above value. This follows from the proof of Lemma 7 where

19

Algorithm 8 UsSeREP - Learning Polynomial from Metafeatures

1: Input: Metafeature§ =[f1;:::;f] (k K), distributionD

Halt with failure if F is empty.

3: Letl be the indices of those rows i that are linearly independent and Efl] be the corresponding

k k sub-matrix ofF.

Query for only the featurels on all samples.

Initialize Gto be empty.

for t iterationsdo
Let g be the lexicographically largest monomial@ G with respect td . Find g[l] using the
lexicographic search technique from [2] using the correlation oracle (in practice, estimate this using
theS).

8: Solve forw,:[I](g[l D inFTl]Wr:[l](g[l 1) = gll]. If no solution exists, halt with failure.

9: Estimateg F‘w,:.[I](g[l 1.

10: Halt wi@ failure if the degree of is greater thaul.

11: ag h "L (b Hg () (Pe Py

122 G GJ[feag

13: Draw a single sampléx; Pg(x)) from D, query thed features that are relevant® If Pg(x) 6 P(x),

halt with failure.
14: ReturnG.

n

N o g R

we showed that fol corresponding to linearly independent FOWg.,](g[l) = w(g) and hence given
W](g[l]) there is a uniqug 2 C(F) de ned byg = F‘w,_w[I](g[l 1.

Now, we need to prov6 that we nd a co-ef ciemty for the to-be-extraaed monomial, that satis es
ag = ag. We rstnotethah ™[, Hg (i); (Pe Pg)i returnsthe co-ef cientof” [, Hg (x)in (Ps Pg),
sayag, in the basis representation of the polynomial. Next, we claim that the co-efa&m the bases
representation is contributed to purely by the co-ef ciagtin the monomial representation. If there was
any other monomial that contributed a@ then it had to have a lexicographically larger value tgamith
respect td or equal tog with respect td . However, this contradicts the fact thgtvas chosen to be the
unique Iexicographi@lly largest value with respect tarhus, we only need to account for the contribution
of the co-ef cient of L, Hyg (x;) with an extra factor ofy, which corresponds to the co-ef cient af’
within Hg; (Xi).

b. This follows from the proof of Lemma 7 and Lemma 25 applied to polynomials.

c. First of all, we examin& features when we quetyon all samples. Now, note that when we execute
the algorithm using samples for the correlation oracles, we will have to confpiiie on each sample.

This however will only require evaluation of features relevarbi&inceG consists of at mogtmonomials
each of degree at modt this can be only as large . O

Sample-based estimationWe note that when we replace the oracles by estimation using random samples,
we should be careful about approximation errors that may affect the lifelong learning protocol. For example,
if we were to infer that a monomial term exists@when in reality it does not, we may incorrectly add it to

our representatioR” when it should not be. However, if the co-ef cients of each term in the polynomial were
not too small, we can overcome this problem by learning the co-ef cient of the monomial, and checking
whether it is above a small threshold, before deducing that it indeed is a term in the polynomial.

20

5 The Agnostic Case

We propose a novel agnostic lifelong learning model where the learnerrfates learning tasks of which

m tasks are guaranteed to be related througtKthmetafeatures it while the other tasks are arbitrary.

Note that this is different from the conventional sense of agnostic learning where each individual task may
involve model misspeci cation or noisy labels. What makes this challenging is that thad” targets

can be chosen and placed adversarially in the stream of tasks. Since in the worst case there is no hope of
minimizing feature evaluations done on the bad targets, we adopt the natural goal of reducing the feature
evaluations on the training data of thegood targets.

Problem Setup 4. In the agnostic model, the learner is faced with a seriemaf r targets such that:

1. m (good) targets are guaranteed to be related to each other through a set of akmuostafeatures,
while the remaining (bad) targets can be adversarially chosen and placed.
2. the learner has to reduce the feature evaluations done on the samples forgtated targets.

We focus our discussion on learning decision trees with deépthO (1) noting that it is straightforward
to extend it to learning more general decision trees and to other targets. In fact, in the following discussion,
it may be helpful to imagine the targets to be decision stumps over just one feature and the metafeature set
F to simply be a set oK features. Now, recall that in the original setup,consisted ofO (K) useful
metafeatures from at mos#t targets that were learned from scratdseREP failed to learn them. A
problem that arises now is th&t may have been updated with metafeatures from bad targets. Then, even
if F containedK metafeatures, we cannot guarantee that future good targets can be learndd. \slhgt
should we do then?

To address this, we present two simple computationally-ef cient solutions below that highlight an
interesting trade-off between the number of targets learned from scratch and the number of features
evaluated on the remaining targets. In thexpansiontechnique, we allow the learner to upddteon
every failure ofUSeREP allowing the representation to get as large as it can. Imfestarttechnique, we
restrict the size of the representation but however, whenever the representation is “bad”, we erase and start
learning the representation all over again.

r-expansion technique Observe that since targets belong t®T(F), there exists a representation
of at mostO (K + r) metafeatures that is suf cient to describe all ther r targets: a representation that is
the union ofF and ther bad targets as they are. Thus, we allow the lifelong learner to updateenever
its USEREP fails, which would result in a representation of at m@stK + r) metafeaturesUSEREP
will fail on at mostK good targets (and possibly on all thévad targets which we do not care about) and
learn the rest successfully evaluat@dK + r) features per example. Note that this protocol is essentially
identical to the original protocol in Algorithm 1.

r-restart technique Alternatively, we enforcgFj K as before but whetyseREP fails on a
K + 1™ target, we learn that target from scratch after which we simply éfaaad effectively restart our
lifelong learning from the next task. Every timésEREP fails on aK + 1th target after the most recent
restart, we restart similarly. This technique learns more targets from scéafcK,) targets in particular,
but evaluates onlD (K) features per example on the remaining targets. The protocol is described more
formally in Algorithm 9.

21

Algorithm 9 r-restart basedA yr; Ar)-protocol for agnostic lifelong learning in the model of Problem
Setup 4

which can be represented using an unknowrsef K metafeatures.
2: Let F be our current learned representation. Initiafzéo be empty.
3:forj=1;2:::m+rdo
UsingF andSU), attempt to cheaply leamf) with USEREP algorithmA yg.
if learning was not successtfillen

Extract all features it5() and learrg!) from scratch.

If jFj = K, assign an empty representatiorfto

ProvideF andgl) as input tolMPROVEREP algorithmA g to updateF.

o N o g A

Whenr = O max {;5N;K , itis easy to see that one of these two techniques makes only
O (S(KN + mK)) feature evaluations, which is as good as the performance whe®. To deal with
larger values of , we describe a combined technique that deals with the trade off carefully and does better

than both the above:

Theorem 10. In the agnostic model where we fate+ r decision tree targets such that trees belong to
DT(F), the number of feature evaluations on the training data fonthiees:
ther-expansion technique 8 (S(KN + m(K + r))).
ther -restart technique i© (S(rKN + mK)). p
a combination ot-expansion and=c-restart isO(S(' rKNm + Km)), forc= " rKN=m pro-
videdr = (max(m=n; KN=m; K)).

Proof. In r-expansion, we allo# to have as many & (K + r) metafeatures. Now, every bad target may
result in addingO (1) metafeatures t& while them bad targets will result in addin@ (K) metafeatures
to F. Thus, we will be able to learn all but good targets using™ by examining onlyO (K + r) features
per example i.eQ (S(rKN + mK)) features overall.

In r-restart, every tim&JseREP fails on aK + 1th target, we learn that target from scratch and then
erasd- effectively restarting our lifelong learning. Now, at least one ofkhe 1 trees learned from scratch
must be a bad target. This is because if none oktheees that were used to upd&ewere badF would
have been rich enough to represent all the good targets. This means tat-théh target has to be a bad
target. Thus, every restart corresponds to a failured®EREP on at least one bad target and at midst
good targets. Then, we will face at mostuch restarts, learning at maot targets from scratch during the
process and the rest from or®/(K) features per example i.€,(S(KN + m(K + r))) features overall.

Now whenr = O max %; observe that -expansion makes onl@ (S(KN + mK))) feature
evaluations. Similarly, when= O [, r-restart make® (S(KN + mK)) feature evaluations. This is
as good as our performance whens 0.

Todealwithr = max ;X ;K , we can combine the above techniques, in particular, we com-
bine t-restart withc-expansion. That is, between every restart we alfowo accommodat® (K + ¢)
metafeatures and whasiseREP fails on theK + ¢+ 1th target we restart the representation. Recall that
each bad target may contribue(1) metafeatures while all the good targets contribut®1d) metafea-
tures. Thus, between every restilsEREP would have failed on at mos€ good targets and at least
c+1 bad targets. Since there are onlpad targets, we then face orlly L restarts. Since we learn only
O ¢ K targets from scratch and learn the rest by examining @K + c) features per example, we

Cc
evaluateD S(LKN + m(K + ¢)) features overall.

rKN

m— and the minimum is

The value of ¢ that optimizes the above bound is =

@] S(p rKNm + mK) . But note thatt must take a meaningful value for this bound to hold good.

22

That is, forc-expansion to make sense, we need 1 and forCL—restart to make sensgL, 1. Thatis,

we neect 2 [1;r], which can be veri ed to hold good when=" max &; KN, K . O

6 Lower bounds

We prove lower bounds on the performance of any lifelong learner under different rargegioé agnostic
model. In particular, we prove tight lower bounds for suf ciently small and large valuesighoring other
problem-speci ¢ parameters and the sample size pararBefdirat scaled only logarithmically witN for
most of our target classes). An interesting insight here is that wietoo large, we prove that no learner is
guaranteed to succeed by makidgmN) feature queries, which means that lifelong learning is no longer
meaningful for really large values of

Our main idea is a randomized adversary that poses decision stumps (trees with only the root node)
or degree-1 monomials to the learner. In particular, we use Lemma 12 where we show that when the
adversary picks one feature at random from a podW8ffeatures to be the decision stump/monomial, if
the learner examines ontyN 9 features, the learner will fail to identify the correct feature for the target
with probability (1) . Thus, for the learner to successfully complete the task, it must exarihe’)
features. Thento force alearner to exam@KN + mK) features, the adversary picKsdistinct features
at random from the pool o features for the rstK targets. Then it assigns theke features as the
metafeatures and picks the remaining targets at random from this choserksétatiires.

. 2 .
Theorem 11. Letrmn = max T KNk oy = min MV (N KT g the agnostic model of

Section 5, there exists an adversary such that, omtlgood trees, any lifelong learner makes:

(NK + Km) feature evaluations wheh r rpin.

max ﬁ;l KN + Km feature evaluations whannin ' 'max-

(mN) feature evaluations whem,ax .

Proof. In Lemma 12 we design our randomized adversary. We prove Theorem 11 in the following three
lemmas one for each rangerfFirst in Lemma 13 we prove a lower bound ¢f KN + mK) that holds

for any value ofr. Then in Lemma 14 we prove a lower bound for intermediate valuesaoid nally in
Lemma 15, we prove a lower bound for large values.of O

Lemma 12. (Randomized adversaryjor a particular task, if the adversary picks a feature from a pool
of NOfeatures N® N) to pose a single-feature tardetf the learner examines ontyN 9 features, the
learner will fail (i.e., pick the wrong feature) with probabilityl) .

Proof. Leti be the feature chosen by the adversary at random from a pob?fefatured |, andl be the
set of features examined by the learner. The random choicecofrresponds to different possible outcome
events. But observe that from the perspective of the learner the events correspondig tthe adversary
picking a feature not examined by the learner) are all indistinguishable. This crucial observation tells us that
in all such events, the learner will adopt the same strategyP ki) denote the probability that the learner
outputs feature in this strategy. LePr,(i) denote the probability that the adversary chose fedtate
random from its pool oN °features.

Then, the probability that the learner fails is at least the sum of probability of 'ghe event that the adversary
picksani froml | and the learner does not pickWe lower bound this probability ;,, |, Pra(i)(1
Pr(i)) as follows:

5t does not matter if the learner knows thés&features or not.

23

X , . 1 X : 1. .
COPre@ P = g @ P g i i Pr
i21 | 1 i2 | i20 |
NO
1 o -
N© N® o(N) 1 = (1)
P
The second inequality follows from the factthat,, |, Pri(i) 1andthe number of examined features
jlj = O(N9.

O

Lemma 13. There exists an adversary such that any lifelong learning algorithm maké&N + mK)
feature evaluations.

Proof. For the rstK single-feature targets, our adversary randomly pkkdistinct features which will
be the metafeatures. Each of the remainimg K tasks are targets that correspond to one of these
chosen features at random. Now note that for ajagskerej K, the adversary effectively picks a feature

at random from a pool ol j + 1 features (which excludes thie 1 features already chosen). Thus,
the learner has to examiné N j +1) features in order_to not fail in this task with probabilitfl) .
Thus, over the rstK tasks, the learner has to examide J-Kzl N j+1 = (KN) features over

all. Then, in each of the followingnh K tasks, the learner has to examirieK) features per task i.e.,
((m K)K) features overall, which i mK) sincem is large.

O
Now we prove a better bound for values ofgreater tharmrmin = max f; I, K but less than
2
Fmax = mMin %; W . Here, instead of precisely choosing good targets and targets, the

adversary will pose a set of targets and then ch&bdeatures to be the metafeatures. We then show that
(m) of the targets are good targets ar{dr) targets are bad targets that correspond to the remaining
N K features.

Lemma 14. (Lower bound for intermediate values af) Whenr rnax, there exists an adversary such
that any lifelong learning algorithm makes max ;1 KN + Km feature evaluations.

Proof. Whenﬁ 1, the lower bound of (KN + Km) follows from Lemma 13. Hence, consider

v > L Letm®= ﬁ The adversary rst presenta®single-feature targets picked at random from
the pool of allN features. Then the adversary chookesandom features to be the metafeatures, hence
marking targets corresponding to théSdeatures as good targets, and the rest as bad.

Now, we can show that there are in fa¢t m) good targets and(r) bad targets, thus ensuring that
this is a legal sequence of adversarial targets. Sinite 5N N, using Chernoff bounds, with high

probabilityl O(1), wehave m®™ K = (r)badtargetsand m% = K~ good targets.

(N K)
(N K)m
N

Since,r , this translates to

of targets.

Now, from Lemma 12, we get that the learner has to evaluattta,\HK—m N features overall. In addi-
tion to this, the adversary presents a sequenoe gbod targets chosen at random from khenetafeatures.
Note that this is legal because we still pose onty good targets. This accounts fqr mK) more feature
evaluations.

In total, the learner examines ﬁ N + mK features. O

W = O(m) good targets. Thus, this is a valid sequence

24

We nally show that for suf ciently larger i.e., r Imax andr I'min, the learner has to evaluate
(mN) features.

Theorem 15. (For larger) Givenr rmax andr rmin, there exists an adversary such that any lifelong
learning algorithm makes(mN) feature evaluations.

Proof. The range of values of such that ~ rmax = min - M8 W can be split into the interval

r % and the intervaf%,\l)2m r%. We will consider these two intervals separately and provide
adversarial strategies for both.

Caselr % Letm®= % The adversary poses®targets to the learner chosen at random from
alltheN features. Thus, the learner is forced to examiné\) features on each target. Then, the adversary
chooseK features to be good features, thereby marking some of the targets as good targets. We show that,
of them®targets, there ard m) good targets and onl9 (r) bad targets. Therefore, this is a valid sequence
of targets and furthermore, on this sequence the learner exanjimes N) features.

To count the number of good targets, we observe rifat % . Then from Chernoff bounds, with
high probabilityl O(1), we have that mo% i.e., (m) targets are good targets. Sino€ r, we

have onlyO (r) bad targets.

q
2
Case2r< MN.p (N_KIM Now, we sem®= ™M and samplen®targets at random from the

pool of allN features. Then we picK random features to be the metafeatures and then presgobd
targets choosing randomly from the poolkbfmetafeatures.
To count the number of good targets in the rst sequencm®fargets, observe that® I\(Iq because

r KN Hence, with high probabilitg O(1), the number of good targets is mo%- = rem

Sincer % thisq isO(m). Similarly, with high probabilityl O(1), the number of bad targets is

P N K)2 . - - N K)?
mo K = mm N K= ro @M Then using the inequality (N K™

we %let that the number of bad targetsOér). Thus, this is a valid sequence of targets. Furthermore, on

'KT’“ good targets, the learner is forced to examifieN) features. Thus, on the rst sequence

the learner examines P rKmN features overall. Since w,this is (m(N K)). Onthe

second sequence the learner examdémK) features overall. In total, thisig mN) feature evaluations.
O

7 Discussion and Open Problems

Lifelong learning is an important goal of modern machine learning systems that has largely been stud-
ied only empirically. In this work, we theoretically analyze lifelong learning from the perspective of
feature-ef ciency. More speci cally, we show how, when a series of tasks are related through metafeatures,
knowledge can be extracted from previously-learned tasks and stored in a succinct representation in order to
learn future tasks by examining only few relevant features on the training datapoints. To this end, we present
feature-ef cient lifelong learning algorithms with guarantees for widely studied classes of targets, namely,
decision trees, decision lists and real-valued monomials and polynomials. We also present algorithms for
an agnostic scenario where some of the targets may be adversarially unrelated to the other targets. Finally,
we derive lower bounds on the feature-ef ciency of a lifelong learner in this model, which show that under
some conditions, the guarantees of our algorithms are tight.

25

An open technical question is whether our lower bounds can be extended to incorporate problem-
speci c parameters such as the depth of a tree/list or the degree of a monomial/polynomial. In particular,
while the feature-ef ciency bound for our decision tree learning algorithm has a dependeira®, af
is not clear whether a bound & + d is achievable. Another open question is whether it is possible to
characterize the hardness of recovering the metafeatures exactly in the case of decision trees and lists (even
though our algorithms work without having to recover the metafeatures exactly). Finally, we note that as a
high level direction for theoretical research in lifelong learning, it would be interesting to explore different
ways of formalizing task relations for various families of targets, and to explore the different kinds of
resource-ef ciency bounds they can guarantee, while also understanding their limitations.

Acknowledgements This work was supported in part by the National Science Foundation under grants
CCF-1535967, CCF-1525971, CCF-1422910, 11S-1618714, a Sloan Research Fellowship, a Microsoft Fac-
ulty Fellowship, and a Google Research Award.

References

[1] International Conference on Machine Learning (ICML) Workshop on budgeted learning, 2010.

[2] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning sparse polynomial func-
tions. InProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SQ&88s
500-510, 2014.

[3] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In
Proceedings of the Annual Conference on Neural Information Processing Systems (i) 41—
48, 2006.

[4] Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete
dictionaries. InProceedings of the Conference on Learning Theory (COhdges 779-806, 2014.

[5] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Ef cient representations for lifelong learn-
ing and autoencoding. IRAroceedings of the Conference on Learning Theory (COpAges 191-210,
2015.

[6] Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple task sam-
pling. Machine Learning28(1):7-39, 1997.

[7] Jonathan Baxter. A model of inductive bias learnidgurnal of Arti cial Intelligence Research (JAIR)
12, 2000.

[8] L. Breiman, J. Friedman, R. Olshen, and C. Stofidassi cation and Regression TreegVadsworth
and Brooks, 1984.

[9] Hendrik Drachsler, Hans G. K. Hummel, and Rob Koper. Personal recommender systems for learn-
ers in lifelong learning networks: the requirements, techniques and mbdetnational Journal of
Learning Technology (IJLTB(4):404—-423, 2008.

[10] Michael Elad and Michal Aharon. Image denoising via learned dictionaries and sparse representation.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition ((D4gR3
895-900, 2006.

26

[11] Aloak Kapoor and Russell Greiner. Learning and classifying under hard budgktachine Learning:
16th European Conference on Machine Learning (ECNbages 170-181, 2005.

[12] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree learning
algorithms. InProceedings of the Annual ACM Symposium on Theory of Computing (Spages
459-468, 1996.

[13] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning AArti cial Intelligence,
155(1-2):93-146, 2004.

[14] A.Kumarand H. Daume lll. Learning task grouping and overlap in multi-task learnirRyolceedings
of the International Conference on Machine Learning (ICMRP12.

[15] Michael S Lewicki and Terrence J Sejnowski. Learning overcomplete representdiemsl compu-
tation, 12(2):337-365, 2000.

[16] Daniel J. Lizotte, Omid Madani, and Russell Greiner. Budgeted learning of naive-bayes classi ers. In
Proceedings of the Conference in Uncertainty in Arti cial Intelligence (UfpBges 378-385, 2003.

[17] A. Maurer and M. Pontil. Excess risk bounds for multitask learning with trace norm regularization. In
Proceedings of the Annual Conference on Learning Theory (CAA0M3.

[18] Guillaume Obozinski and Ben Taskar. Multi-task feature selectioiVdrkshop of Structural Knowl-
edge Transfer for Machine Learning in the International Conference on Machine Learning (ICML)
2006.

[19] Sinno Jialin Pan and Qiang Yang. A survey on transfer learnigE Transactions on Knowledge
and Data Engineering22(10):1345-1359, 2010.

[20] A. Pentina and R. Urner. Lifelong learning with weighted majority vote®risceedings of the Annual
Conference on Neural Information Processing Systems (NE3E.

[21] Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. Decision trees: An overview and their
use in medicineJournal of Medical System26(5):445-463, 2002.

[22] J. R. Quinlan. Induction of decision treddachine Learning1(1):81-106, March 1986.

[23] Lior Rokach and Oded MaimorData Mining with Decision Trees: Theory and Applicationsorld
Scienti ¢ Publishing Co., Inc., 2008.

[24] S. Thrun and L.Y. Pratt, editoréearning To Learn Kluwer Academic Publishers, 1997.

[25] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learnirRpbotics and Autonomous Systems
15(1-2):25-46, 1995.

[26] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.
McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J.
Hand, and Dan Steinberg. Top 10 algorithms in data minikgowledge and Information Systems
14(1):1-37, 2008.

[27] Eric R. Ziegel. The elements of statistical learnifigchnometrics45(3):267—268, 2003.

27

A Decision Trees

We rst present proofs from Section 3. Then, in Appendix A.2, we present results for more models of
decision trees.

A.1 Proofs from Section 3

Now, we present our baseline lifelong learning algorithm that simplyremembers features that have been seen
as metafeatures in its learned representation.

Theorem 16(Naive lifelong learning of decision trees There exists a naive lifelong learning protocol for
decision trees in the model of Problem Setup 1 evallat€S(KN + mKs)) features overall.

Proof. The naive approach follows from a simple observation. If we knew beforehand the set of features
that are involved in a tregl), then in order to learn the tree, at any given node we require the learner to
evaluateGain only over these features to determine the best split at that node. Thus, our protocol will
just maintain the set of features present in any tree learned from scratch so far, Ss &P can use

these as “metafeatures” to carry out its evaluations limited to these features. Then, any target that can be
represented using metafeatufe®2 F that have been seen before in some other target, will be learned
using our metafeatures. In other words wiése REP fails, the target is guaranteed to contain an “unseen”
metafeature frorfr . Thus, we will learn targets from scratch at mggt = K times. Since each metafeature

in F has at moss distinct features, we will have to evaluate only at mi§st features when not learning

from scratch. O

We now present the pseudocode for the different subroutines described informally in our discussion.

Algorithm 10 AFriIx(f;u;f 9: Afx fCtof at empty leaf node in f

1: Input: Incomplete decision tredsf © empty leaf node in f

2: Assign tovar (u) the root variable of ©

3: Create descendants nodesuaind assign variables to them such that the tree rootedsatientical to
fO

Algorithm 11 LABEL(f;u;l): Assignl touin f

1: Input: Incomplete decision trefe, empty leaf nodel in f , labell 2 f +; g
2: Assign to leaf node the labell.

Algorithm 12 conFLicT(f; w; u;f 9 andiNnpuce(f;w; u;f 9

1. Input: Incomplete decision tredsf 0 nodew in f, nodeu that is a descendant @f or equal tow
itself.

LetV be the set of nodes inthat are ancestors afbut not ofw.

Mapw in f to the root node of ©

Similarly map all descendant nodesvefrom V to the nodes in the corresponding patti fh

Output of coNFLICT(f;w;u;f 9: If there are two internal nodes2 f andv®2 f °mapped to each
other butv 2 VV, var (v) 6 var (v9, output true. Else output false.

6: Output of INDUCE(f; w; u;f 9: Let u®be the node froni °mapped tai. Outputvar (V9.

28

We now prove our result for the semi-adversarial model, where in any given targef, €aEh has at
least apmin probability of being the topmost metafeature.

Theorem 17 (Lifelong learning of decision trees in semi-adversarial mod@l There exists a lifelong

learning protocol for decision trees that evalua®s pm% log® N + m(K + d) features overall in a

semi-adversarial model where each elemerft dfas at least min probability of being the topmost element

of any target. The protocol learns only the r&t - logX targets from scratch, adds them Foand

Pmin

then usedJSEREP Algorithm 2 to learn all the subsequent targets frém

Recall that direct application of Lemma 4 implies that we will learn the subsequent targets examining
O -1 logK + d features per example. However, a more careful analysis making use of the fact that

Pmin
each elementiff is in fact fromDT(F) shows that we will examine onl® (K + d) features per example.
Note that this is an improvement becaﬁg logK K logK.

Proof. Consider the protocol from Theorem 17 that learns theOstpm% log X targets from scratch, and

adds them all té&=. Then with probability atleast , each metafeature frof will be at the top of some
metafeature fronF. That is,DT(F) DT(Pref(F)). Then, from Theorem 2 clearly Algorithm 2 can
learn any future target from@T (F) as the target will also lie iDT (Pref(F?)). Now, by a direct application

of Theorem 2 this means we evalufie pm% logX + d features per example.

However, we can prove a tighter bound@{K + d) by following the proof technique for Lemma 4
but using to our advantage the fact that the metafeaturEsane not arbitrary trees, but in fact members
of DT(F). First of all, observe that the number of type A costs along any path is irkfaahd notjFj
because the metafeaturesihcan have only one of at mokt variables at its root. Now, for the rst case
within type B, we will pay a cost ofl as before. However, for the second case, observe that any variable
that is induced ati by a metafeatur& 2 F, is in effect induced by a metafeature2 F . That is, when we
computeINDUCE(g; W, u; f) for some metafeature' 2 F, we effectively computeNDUCE(g; ws ; u; f)
for some metafeatuife 2 F . Similarly we can argue that whenever we mékadistinct feature queries at a
particular nodau during the algorithm, for all nodes beyondn that path, we effectively eliminate queries
arising fromk, 1 metafeatures fror (and notF as before). This will result in a total cost fj = K
for this case. O

A.2 More Lifelong Learning Models for Decision Trees
A.2.1 Decision Trees with Anchor Variables

In this section, we consider a lifelong learning model of decision trees that assumes a more structured repre-
sentation where each metafeatur&imas a variable at its root that does not occur in any other metafeature.

Problem Setup 5.Besides the assumptions in Problem Setup 1, we assume that for each metéfeature
there exists a unique anchor varialde 2 [N] that occurs only at the root node bf and not in any other
node off; or any other metafeature &f.

In this setup, we again us¢seREeP Algorithm 2. However, folMPROVEREP, we modify Algorithm 3
slightly. More speci cally, after identifying a path igthat was learned incorrectly usiig we pick exactly
one subtree from this path and add itRo(instead of alld subtrees). We show that the total number of
features evaluated reduces from a factokdfto K + d.

Theorem 18. In the model of Problem Setup 5, tHedgEREP Algorithm 2]JMPROVEREP Algorithm 13)-
protocol for decision trees evaluat€s(KN + m(K + d)) features overall.

29

Proof. Like we did in the proof for Theorem 1, we will show by induction th&k targets have been learned
from scratch, then there exists a sekdfue metafeatureS° F such that each metafeature2 F Ois the

pre x of some metafeature if". Then as we saw earlier, after learniigtrees from scratch, we can show
that learning usind™ will never fail. To prove our induction hypothesis, we claim that in any incorrectly
learned path of, the topmost node (say) that con icts with the incorrect outpug has to contain an anchor
variable that is not at the root of any metafeatur&fh This would mean that when we place the subtree
rooted atu in F-, we are adding a tree whose suf x is &r2 F that does not belong 16° Essentially, we
strictly increase the number of learned metafeaturekfoy every failure ofUSEREP.

Now we need to prove that, the topmost con icting node in some pathgfndeed contains an anchor
variable that is not at the root of any metafeature fiéh Let u® be the corresponding node g This
means that for all ancestors of, we assigned the correct variable, but something went wrong and
hencevar (u) 6 var (u9.

Now, if var (u) was an anchor variable, but one that occurs already at the root of fsdnE ©, we
will certainly assigrvar (u) to u®which is a contradiction. On the other hand, consider the case in which
var (u) is anon-anchor variable. Thercorresponds to a metafeatdréhat occurs irg and furthermore, the
anchor variable iffi is in one ofu's ancestors, saw; . In other wordsCONFLICT(g; W ; u;f) is false and
INDUCE(Q; W ;u;f) = var (u). Note that by de nition ofw® the corresponding node ok in g, sawao,
has been assigned the correct anchor variadte(w;). Note that in the algorithm this assignment would
have corresponded to a particular metafeaftBeF and a nodevzvff’~ in g such thatCONFLICT(g; V\/]El; WP;)

is false andNDUCE(g; W2 w?; f) = var (ws). By the run of Algorithm 13, we have that ffj if the anchor

-
variable off exists therf exists as a whole too. More formally, this translates tiNFLICT(g; vv?,; ut
being false andNDUCE(g; \A@; u%) = var (u). This means that we will indeed assigar (u) to uwhich
is a contradiction. Thusj can only contain an anchor variable not already the root of any elemEft in_]

Algorithm 13 IMPROVEREP - Decision Trees with anchor variables at the root

1. Input: Old representatioRq and a treeg 2 DT(F) learned from scratch and the incorrect tgge
learned usingrog.

F Fou

Identify a path starting at the root gfsuch that the corresponding pathgiis shorter.

Identify the topmost node in this path gnwhich con icts with the corresponding node én

Add the subtree iig rooted at this node tB".

ReturnF

A.2.2 Sparse Decision Trees with Overcomplete Representations

In this section, we consider another model wherein we assume that we have a very large metafeature set
(of cardinality greater thaN) and that each decision tree is constructed in a semi-adversarial manner. Our
model, in some sense, is intended to capture noise. In particular, consider a metafeature set that is generated
from the much smaller metafeature set from Section A.2.1 by creating many noisy duplicate copies of each
metafeature. The noisy duplicates preserve the structure and the root variable of the original metafeature but
may have different variables located in its non-root nodes. Clearly, this metafeature set affords a much larger
representation which captures slight deviations from a rigid pattern. First observe that the “anchor” variables
are no longer unique to a single metafeature, but are common to multiple metafeatures that however have
the same structure. Now, we assume that each anchor variable has atdgaspeobability of being the

root variable in any target. Note that this is not as strong an assumption as the previous semi-adversarial

30

model because this allows for the case where some metafeatures do not occur in the top of the model at
all. Finally, we assume that our targets require apgrse representations that along any path down the
target, at most metafeatures frork have been af xed. Below, we state our model formally.

Problem Setup 6. Besides every assumption in Problem Setup 1 except the metafeature assumption, we
assume the following:

Metafeatures We assume that the metafeaturelSet F1[F ,:::[F k, where eachFy consists of
at mostK 1 metafeatures of the same tree structure and the same root anchor vagjablénis root
anchor variable does not occur anywhere els&in

Semi-adversaryEach anchoray has at least gy probability of being the root metafeature in any
targetgU).

Sparsity Any targetgl) can be constructed usirfg in a manner that uses at mostmetafeatures
down any path from the root to a leaf g¥). Typicallyt K.

Observe that the metafeature set is of cardinality at rHa¥¢,. We now present a lifelong learning

protocol that learns at mogt;K, + O pm% log X2z targets from scratch, and learns the rest examining
only O (tK 1 + K> + d) features per example. Thus, given a constant sparsity paraméeensure that
we evaluateo(mN) features, we can allow dictionaries of cardinalityK» = o(N2). We now state our
result formally. The idea is that we rst learn a few targets from scratch and identify the anchors. Then, we
partition any target that/SEREP fails on into trees rooted at one of these anchors and add these trees as

metafeatures hoping that we add at least one new metafeaturé&ftorour representation.

Theorem 19. There exists a lifelong learning protocol for decision trees in the model of Problem Setup 6
that evaluate®® KiKo+ O -1 logk2z N + m(Kit+ K,+ d) features overall. The algorithm

Pmin
rst learns O pm% log X2 targets from scratch to identify thH€, anchor variables. The algorithm then
usesIMPROVEREP Algorithm 14 andJsSeREP Algorithm 2.

Proof. Letl ¢ be the set oK , anchor variables. Under our assumptions, with high probability each of them
will be the root of one of the rsO % K2 targets, and since no other variable can be a root of any

o log
target, we will identify them compler':ely and correctly.

In any future tree thaUSEREP fails on, we learn the tree from scratch and partition the tree into
metafeatures based ép and them td=. We claim thatF F at any point of time and its cardinality
strictly increases with each failure &fseRep. Then withK 1K, failures of USEREP, we will have
F = F, after which we will not see any failure. Assume this is true at some point of the run. When
USEREP fails on a new targeg, it means thag 2 DT (Pref(F’)). However, sincg 2 DT(F), this implies
thatg is constructed using at least one metafeatubeF F. Now observe that we would have identi ed
the root and leaves df in g correctly (because we would have identi ed all anchorg itorrectly). Then,
we would have addefd to F, thereby satisfying our induction hypothesis.

By a direct application of Lemma 4 on the representaffgrwe get that we examin® (K 1K > + d)
features per example which is uninteresting. However, we can tweak the argument we had for its proof for
this case. First of all, we will have onk , type A costs (i.e., feature examinations) and k@K ». Then,
for type B costs, in sub-case we will have a cost ofl as before. For sub-casethe cost was equal to
the number of metafeatures I, which would equaK 1K, in this case. However, note that these costs
correspond toNDUCE(g; W u; f) for differentf~such thatv,- contains the anchor variable fn In total,
we know that there are only at mdsanchor variables along a particular path, and hence katydifferent
metafeatures effectively result in some feature costs of this type. Hence, by restricting our analysis to only
these metafeatures, we can show that the feature cost is proportidha smd not toK 1K ». In total, this
would amount to a cost @ (K 1t + K, + d) O

31

Algorithm 14 IMPROVEREP - Decision Trees with a Sparse but Overcomplete Representation

1. Input: Old representatioRg, | ¢ the set of anchor variables, and a tgg@ DT(F) learned from
scratch.

2. F Foid

3: Identify the locations of variables froht in g and partitiong into trees rooted at one of these variables
each. Add each tree 9.

4: ReturnF

B Monomials

In Appendix B.1, we present a simple algorithm for learning monomials exactly from scratch under some
assumptions. Then in Appendix B.2, we present our baseline lifelong learning algorithm for monomials.
We also present Lemma 25 which we used to show that it is suf cient to check our prediction on a single
randomly drawn example to verify whether the monomial we learned is correct.

B.1 Learning Monomials from Scratch

Recall that for any inpuk = (x1;X2;:::xn) 2 RN, we denote the output ofddegree targgt monomial
g =(01; 092 :::;0nv) by the functiorPg(x) = x*x$:::x whereg; 2 N[f Ogand the degree ; g d.
We denote the unknown metafeaturelBet ffq;f,;:::galso as a matrix where coluniris f;. Therefore,
saying thatg can be expressed usiiiigis equivalent to saying lies in the column space & denoted by
C(F). Thenforank rank kK K),N k matrixF and for anyg 2 C(F’), we de new(g) 2 RK to
denote the unique vector of column weights such Eat.(g) = g.

For each monomial target, we assumed 81 is a product distribution i.e., the features are indepen-
dent. We now state some speci ¢ assumptions aBdlit In particular, we assume that the variance of each
variablex; is not too small. The rationale is that if the variance was very small (in the extreme case, imagine
Xij being a constant), the factmﬁ‘ would essentially be a constant factor in the monomial target. While it
may be possible to design a more careful learning algorithm that can extract these nearly constant factors,
that is beyond the scope of our discussion.

Secondly, we assume that the probability density function is nite at every point i.e., the probability
distribution is not too concentrated at any point. We will use this assumption to apply Lemma 25 when we
draw a single sample to verify whether the monomial we have learned matches the true monomial.

Finally, we assume that the supportxfis [1;2]. While the upper bound o2 is to simplify our
discussion, the lower bound is to avoid dealing with valueg;ahat are close to zero. This is essential
because as we will see later, we will deal with logarithmic values @i the learning process. We now state
our assumptions formally.

()
1

Assumption 1. EachD() is a product distribution. LeD{) = ,(\P. We assume that for all

features:

Minimum varianceV ar () (logx;) c.
Bounded probability densit@x; 2 R, i(j)(xi) 2R
Bounded supporiThe support of i(” is[1;2].

We now present our simple poly-time technique for learning monomials from scratch with polynomially
many samples. Recall that the output of the monomgiah an inputx is denoted byPy(x). Let us denote
the logarithm of this outpubgjPyj by Qg4. Observe that learning is equivalent to learning the coef cients

32

of the “linear' functionQg. To see how this can be done, we will de ne a notion of correlation/inner product
of two functionsh(x) andh{x):
hh(x);hqx)i , E[h(x)hYx)]:
Then, we claim thagj can be expressed as the following inner product.

Lemma 20.
hQg(x);log(xi) Eflog(x)li _
Ellog?xi] E2[logx;] '
Proof. Sincex; is picked independent of the other variables, so is the random va¢iagbe; E[log(x;)]).
Thus, wherj 6 i

Eflogxj(logxi Ef[log(xi)])] = Ef[logx;] Eflogx; Eflog(x;)]] = 0

However,
Ellogxi(logx; E[log(xi))] = E[log?xi] E?[logxi]

Then, the claim follows from our de nition oQg. O

Observe that using the above fact, we can calcgater eachi 2 [N] exactly if we were provided the
exact values of each correlation term in the equality. However, the best we can hope for is to approximate
these terms using suf ciently many samples. Fortunately, we can actually approximate each of these corre-
lation terms to a small constant error such that these errors together imply a constant error sméllk® than
in estimatingg;. Then we can round off our estimate to the closest natural number to nd the exact value
of gi. We now summarize our simple algorithm for learning a monomial from scratch, and then prove our
polynomial sample complexity bound.

Algorithm 15 Learning a monomial from scratch

1: Input: DistributionD overRN

2: Draw S samplegx; Pg(x)) from D and query all the features on all samples.
3: fori=1;2;:::N do
4: EstimateE[log® xi], E[log? x;] EZ[logx;], andQq(x);log(xi) E[log(x;)]i empirically.
5. Round off
hQg(x); log(xi) Eflog(xi)li
Eflog®x] E?[logx;]
to estimate; .
6: Returng

Clearly the above algorithm has polynomial running time and sample complexity as |&1g pslyno-
mial. The crucial guarantee we need now is that polynomially many samples are suf cient to estimate each
g exactly, which we show in Theorem 23. We rst begin by bounding the error in estimating the numerator
Qg (x);log(xi) E[log(xi)]i in Lemma 21. Then, in Lemma 22 we show how this error and the error in
the denominator terms, add up to result in an error of at rixe®in estimatingg,. Using these, we prove
in Theorem 23 that the algorithm estimates each power exactly. In the following notation we vltase
denote the empirical estimate of an expected value.

Lemma 21. Using a sample s& of sizeO 4 log Y |, for agiveni 2 [N], if jE[logxi] E[logx;]] 1,
3
then we can guarantee that 4
1 X .
Pr iSi Qg(x)(log(xi) Eflog(xi)]) h Qg(x);log(xi) Eflog(xi)li di+ 3 =0 °
x2S

33

Proof. Consider the random variabl@g, (x) (log(x;) E[log(x;j)]). Itis easy to show th&q(x) log(x;) 2
[0; d] with the extreme values attainedkat (2;2;:::) andx = (1,;1;:::). Then,Qg(x)E[log(xi)] 2 [0;d].
Thus, the random variab@q (x) (log(xi) E[log(x;)]) liesinarange of siz&d. Then, by Chernoff bounds,
we can show that

1] #
X

1 .
Pr Si Qqg(x)(log(xi) Eflog(xi)]) h Qq(x);log(xi) Ellog(x)li 3 =0 °
x2S

from which the above claim follows because the absolute difference bet®gr); log(xi) E[log(xi)]
andhQg(x);log(xi) E[log(xi)] is at most maxy Qg(x) (E[log(xi)]) E[log(xi)])) d ; (because
the rstterm is at mostl and the next is at most). O

!
d

min(<2;¢;1)

giveni 2 [N]we can learrg; such thajer gj 3.

Lemma 22. Using a sample s&& of sizeO ~log3, with a high probability ot °for a

Proof. Let ; and 3 be as de ned in Lemma 21. Additionally IgE[log? x;] E[log® xi]j 2. From the
previous results and from Chernoff bounds, we have thab; 3 are allO min(%; S 1) given the size

of S. We now have a fractional expression on the right hand side of the equation in Lemma 20 for which we
can derive the error in estimating the numerator and the denominator individually. We need to show that the
overall error in estimating the fractionis2i.e.,O(1). Now, the error in estimating some fracti@qusing

% giventhaG Gj gandjH Hj H can be upper bounded by:

G G g - G G H
H 4 H H (H w)H
G (max G+) n
min H (mnH {)min H

In our case, we havd = E[log?x;] EZ?[logx;]andG = Qg (x);log(xi) E[log(xi)]i, minH = cand
maxG = d. Also, ¢ = 1d+ zand 4 2+2 1+ % The latter inequality follows from the fact that
the error in estimating[log® xi] is » and the error in estimating[log x;] is at most(E[logx;] + 1)?2
E2[logxi] 1(2E[logxi] + 1) 1(2+ 1). By asimple calculation, it can be veri ed that this results in
a total error ofO (1) in estimatingg; .

O

Theorem 23. Algorithm 15 exactly learns a targef from scratch with high probabilith. O - with

S=0 —3% logN™ samples.
min(&-;$;1)

dd
Proof. From Lemma 22 we have that eaghis accurately estimated with probability at ledst O g .

By a union boundg is accurately estimated with probability at least O — . O

We note that it is easy to re ne our application of union bounds to use slightly fewer samples than in the
bound of Theorem 23. In particular, it is possible bring libggN m factor down tdogNK while learning
from scratch, and ttog Km on all other targets.

34

B.2 Naive Lifelong Learning of Monomials

We present our straightforward approach for lifelong learning of monomials which merely keeps a record
of features that have been seen in earlier targets.

Theorem 24(Naive lifelong learning of monomialg. In the model of Problem Setup 2, there exists a naive
algorithm for lifelong learning of monomials that evaluat@e¢S(KN + mKd)) features overall.

Proof. (Sketch) We uséMPROVEREP Algorithm 5 that essentially stores the list of targets that have been
learned from scratch as the columns of the mdrixNow, consider the set of features that have been “seen”

so far i.e., these correspond to rowsAnthat have at least one non-zero entry. Then, for a new target

we de ne aUsSeREP algorithm that determines the powers of only these features. This can be done by
evaluating only those features on the data set using the technique in Algorithm 15. The unseen features are
assumed to have zero power.

Now, consider a new target that is “linearly dependent” on the targets that have been learned so far
i.e.,g 2 C(F). In this case, the unseen features should have a zero exporggasiit is zero in all earlier
targets. Thus, oUdSEREP technique would not fail on such targets. Nowg ifvas linearly independent, it
is possible that an unseen feature has a hon-zero expongnfTim verify whether this is the case, we can
draw a single sample and check whether our prediction matches the true output. If this fails, we learn the
target correctly from scratch and add itfo

Thus, since we add only linearly independent targeks,tm a manner similar to the proof of Theorem 6,
we can show that) SEREP will not fail more thanK times. Our result follows from here because each of
the targets that we learn from scratch have at ndasbn-zero exponents. Then, in total we only have at
mostKd “seen” features i.e., features with non-zero powers that we always examine. O

B.2.1 Monomial Identity Testing

We show here that it is suf cient to draw a single example and check whether our prediction matches the
true label in order to conclude whether the monomial that we learned is indeed the true monomial. Here, we
make use of the condition that the probability distribution is smooth in that the probability density function
at any value of a feature is nite.

Lemma 25. If for every featurd, the marginal probability density function &t is nite for all values ofx;
then we have that for ang®6 g, Pr[Pgo(x) 6 Pg(x)] = 1.

Proof. We will prove by induction oiN® N andd® d that for any polynomiaP °of degreed®overN ©
variablesP r[PYx) = 0] = 0 . Then, we only need to plug iR°= Py Pgoto complete the proof.

For the base case assume the polynomial is only over one variable and any deghi@ fel, and
anyd® d. Then the evenfPqx) = 0] corresponds to picking one of at mazeroes ofP°from R
(sinceN = 1), which amounts to a probability éfaccording to the assumption on the probability density
function.

Now assume for aN®< N andd® , our induction hypothesis is true. The polynontdl can be
expressed as a summation of termsin !‘:O Pio?xz; i :xn)x‘1 wherek is the highest degree af; and
Pis the coef cient ofx}. Then, for a xed value of,;:::xy, P%reduces to a polynomial of degree
k dover one variable. Then, our induction assumption implies that conditioned on some arbitrary values

Then it follows that r[Pq{x) =0] =0 . O

35

B.3 Polynomials

We now describe our straightforward lifelong learning approach for polynomials which remembers only the
features that have been seen so far.

Theorem 26(Naive lifelong learning of polynomialg. In the model of Problem Setup 3, there exists a naive
algorithm for lifelong learning of-sparse polynomials that mak€g S(KN + mKd)) feature evaluations
in total.

Proof. (Sketch) This approach is very similar to the naive approach for lifelong learning of monomials. We
will use IMPROVEREP Algorithm 7 which, as we know already, maintains a list of linearly independent
monomial targets that have been seen in the polynomials learned from scratch so far. Now, for a new target
G, we will perform the “lexicographic search” method from [2] over only the features that have been seen
i.e., during the search we skip features that correspond to an all zero Fowkssentially, we assume that

the unseen features do not occur in the target polynomial. We again check whether the polynomial computed
this way is correct by verifying it on a single sample.

Using this approach we are guaranteed th& if C(F) R, USEREP does not fail because such a
target will not contain unseen features in any of its monomials. Then, we can use an argument similar to
Theorem 24 and show by contradiction thilgEREP can fail at mosK times, and hence evaluate oy
features per example. O

36

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Decision Trees
	3.1 Decision Lists

	4 Monomials
	4.1 Polynomials
	4.1.1 Learning a polynomial from scratch
	4.1.2 Lifelong Polynomial Learning

	5 The Agnostic Case
	6 Lower bounds
	7 Discussion and Open Problems
	A Decision Trees
	A.1 Proofs from Section ??
	A.2 More Lifelong Learning Models for Decision Trees
	A.2.1 Decision Trees with Anchor Variables
	A.2.2 Sparse Decision Trees with Overcomplete Representations

